

ERAE Kc

REFRIGERADORES CONDENSADOS POR AIRE EQUIPADOS CON COMPRESORES A DESPLAZAMIENTO Y VENTILADORES AXIALES

POTENCIA REFRIGERANTE DA 150 a 771 kW

Las imágenes que se muestran arriba son puramente indicativas y no vinculantes

REFRIGERADORES CONDENSADOS POR AIRE DE EXTERNO EQUIPA-DOS CON COMPRESORES A DESPLAZAMIENTO, VENTILADORES AXIA-LES Y BATERIAS DE CONDENSACIÓN DE TUBOS DE COBRE Y ALUMI-NIO

Los refrigeradores de agua con condensación por aire de tipo monobloque de la serie ERAE...Kc son adecuados para la instalación al aire libre y se utilizan para el enfriamiento de soluciones líquidas, también son utilizados para aplicaciones de aire acondicionado o en procesos industriales. La tecnología multiscroll permite alcanzar una notable mejoría en la eficiencia de las cargas parciales en comparación con otros sistemas tradicionales de control de capacidad de refrigeración. La combinación de intercambiadores a alta eficiencia con aletas de calor acompañadas con la pureza termo-física del refrigerante R410A prácticamente sin deslizamiento a los cambios de estado, permite obtener buenos desempeños en todo momento. Esta serie cumple con los requisitos de eficiencia estacional establecidos por las normas (UE) 2016/2281.

Las unidades han sido diseñadas teniendo en cuenta la necesidad de reducir al mínimo las dimensiones globales, manteniendo altos niveles de refrigeración. Este resultado se logró con el uso de componen-

tes de calidad de reciente concepción.

Todas las máquinas están completamente ensambladas y probadas en la fábrica de acuerdo con los procedimientos específicos de calidad, también se suministran todas las conexiones refrigerantes, hidráulicas y eléctricas necesarias para una rápida instalación en el sitio. Antes de aprobar los circuitos de refrigeración de cada unidad se les somete a una prueba de fugas bajo presión y luego vienen cargados con refrigerante R410A y aceite anticongelante.

Limites de operación temperatura:

Unidad estándar

de -20 a 42°C; Agua (en la salida del evaporador): de 5 a 15°C.

Unidades para aplicaciones de WA

Aire: de +10 a 38°C; Agua (en la salida del evaporador): de 7,1 a 18°C.

Estructura

Estructura que consta de una base y marco hecho de elementos en acero galvanizado muy resistente, montada mediante remaches de acero inoxidable. Todas las piezas de acero galvanizado están protegidas en superficie con pintura en polvo de color RAL 7035 horno.

Compresores

Compresores en espirales orbitantes para refrigerante R410A, trabajan en dos circuitos frigoríficos independientes o en versión tandem o trio. Se instalan sobre gomas antivibracion, se producen con motor de arranque directo enfriados por el gas refrigerante aspirado y se equipan protecciones con termistores incorporados de rearme manual que los protegen de sobrecargas. El carter de aceite se dota de resistencia de calefacción, se cargan con aceite poliester. El hornero de los compresores tiene grado de protección IP54. La activacion y la desactivación de los compresores es controlada por el microprocesador de la unidad que regula la potencia termo-frigoíifica erogada.

Evaporador

Evaporador de placas en acero inoxidable AISI 316 "bi-circuito" térmicamente aislado por medio de una colchoneta aislante flexible a células cerradas de grande espesor, anti-uv. Las presion máxima es de 6 bar en el lado agua y de 45 bar en el lado refrigerante. El evaporador se equipa además con un presostato diferencial de seguridad en el flujo que no permite el funcionamiento de la unidad en el caso de ausencia del caudal de agua en el evaporador.

Baterías

Baterías externas de intercambio termico: hecho de tubos de cobre con micro-aletas dispuestos en filas escalonadas y mecánicamente expandido dentro de una bolsa de aluminio. La aleta está diseñada con un perfil tal de asegurar la máxima eficiencia de intercambio de calor (turbo-fin). La máxima presión en funcionamiento en el lado del refrigerante de las baterias corresponde a 45 bar relativos.

Ventiladores

Ventiladores axiales de seis polos con motor eléctrico a rotor externo acoplado directamente al rodete con protección térmica y pilotado par un sistema a inverter V/F que controla la temperatura de condensaciion variando la velocidad de rotación. Con cuchillas en alumlnio de perfil aerodinámico diseñado específicamente para no crear turbulencias en la zona de separación de aire, lo que garantiza la máxima eficacia con el mínimo ruido. El ventilador viene completo con reja de protección en acero galvanizado pintado después de la construcción. Los motores de los ventiladores son totalmente cerrados y tienen protección IP54 y termostato de protección incorporado en el bobinado.

Circuitos frigoríficos

Circuitos frigoríficos independientes, completos con válvula de servicio para la introducción de refrigerante, sensor anticongelante, válvulas de cierre en la línea de líquido, paso de indicador de líquido y humedad, filtro deshidratador, válvula de seguridad en el lado de alta presión del refrigerante y válvula de expansión termostática de tipo mecánica hasta modelo 35120, presostatos y manómetros de alta y baja presión.

Cuadro eléctrico

Cuadro eléctrico: fabricado de acuerdo con las normas de la CE, donde se encuentran todos los componentes del sistema de control y los componentes necesarios para el arranque del motor, conectado y probado en fábrica. Se compone de: estructura adecuada para la instalación al aire libre y para la contención de los órganos de potencia y control, tablero de control con microprocesador con teclado y pantalla para la visualización de las varias funciones, cerradura de puerta e interruptor general, transformador de aislamiento para alimentar los circuitos auxiliares , disyuntores, fusibles y contactores para los motores de los compresores y ventiladores, terminales para las alarmas acumulativos y ON / OFF remoto, caja de terminales de circuito de control de tipo muelle, la posibilidad de interactuar con los sistemas de gestión BMS.

Versiónes

ERAE...Kc - versión estandard

ERAE...U Kc - Versión ultra-silenciosa (U)

La contención del nivel de sonido en la versión U se obtiene con el uso de intercambiadores de refrigerante/aire con superficies aumentadas y con el recinto de los compresores aislado con material insonorizado mejorado.

Aplicaciones

Versión de aplicaciones cálidas (WA)

Unidades certificadas CE y que cumplen con la regulación europea 2016/2281 a las condiciones de trabajo en el lado de uso 23°C / 18°C.

Versión en el mercado exterior (AM)

Unidades que se ajustan a las directivas europeas cuya venta está reservada para países no miembros de la Unión Europea.

Datos técnicos - serie ERAE Kc

	16020	19020	24020	28020	32020	35120				
L\\/	152.2	10/11	240.0	277.6	212.1	355,5				
						131,3				
	,	,	,		,	2,71				
VV / VV						4,00				
	•					157,0				
	130,3	140,9	149,2	155,4	131,7	157,0				
CM/D	2000	2000	2000	2000	2000	2088				
						121,1				
-			,			58				
Carga de refrigerante Kg 30 34 44 46 56 58 Compresores de desplazamiento										
n°/n°	1/2	1/2	1/2	4/2	1/2	4/2				
						198,5				
	· ·	·	•		,	299				
						559				
A	250	210	360	429	444	559				
n°	າ	2	2	4	4	5				
7.7	=	-	-	•		12,4				
						133500				
-						25,8				
	10,5	13,3	15,5	20,0	20,0	25,0				
	1	1	1	1	1	1				
				_	-	61,3				
	,					58,5				
. ,						96,0 400/50/3				
	kW kW W/W GWP t Kg n°/n° A A A n° kW m³/h A rio n° m³/h kPa dB(A) V/Hz/Ph	kW 54,2 W/W 2,83 3,83 150,3 GWP 2088 t 62,6 Kg 30 n°/n° 4/2 A 91,8 A 140 A 250 n° 2 kW 5,0 m³/h 50500 A 10,3 rio n° 1 m³/h 26,4 kPa 31,0 dB(A) 88,0	kW 153,3 194,1 kW 54,2 71,2 W/W 2,83 2,73 3,83 3,80 150,3 148,9 GWP 2088 2088 t 62,6 71,0 Kg 30 34 n°/n° 4/2 4/2 A 91,8 109,6 A 140 165 A 250 310 n° 2 3 kW 5,0 7,4 m³/h 50500 80100 A 10,3 15,5 rio n° 1 1 m³/h 26,4 33,5 kPa 31,0 48,0 dB(A) 88,0 92,5	kW 153,3 194,1 240,9 kW 54,2 71,2 89,4 W/W 2,83 2,73 2,69 3,83 3,80 3,81 150,3 148,9 149,2 GWP 2088 2088 2088 t 62,6 71,0 91,9 Kg 30 34 44 n°/n° 4/2 4/2 4/2 A 91,8 109,6 138,6 A 140 165 195 A 250 310 380 n° 2 3 3 kW 5,0 7,4 7,4 m³/h 50500 80100 75950 A 10,3 15,5 15,5 rio 1 1 1 m³/h 26,4 33,5 41,5 kPa 31,0 48,0 58,0 dB(A) 88,0 92,5 94,5	kW 153,3 194,1 240,9 277,6 kW 54,2 71,2 89,4 103,2 W/W 2,83 2,73 2,69 2,69 3,83 3,80 3,81 3,96 150,3 148,9 149,2 155,4 GWP 2088 2088 2088 2088 t 62,6 71,0 91,9 96,0 kg 30 34 44 46 n°/n° 4/2 4/2 4/2 4/2 A 91,8 109,6 138,6 157 A 140 165 195 229 A 250 310 380 429 n° 2 3 3 4 kW 5,0 7,4 7,4 9,9 m³/h 50500 80100 75950 106800 A 10,3 15,5 15,5 20,6 rio 1 1 1 1 m³/h 26,4 33,5 41,5	kW 153,3 194,1 240,9 277,6 312,1 kW 54,2 71,2 89,4 103,2 114,2 W/W 2,83 2,73 2,69 2,69 2,73 3,83 3,80 3,81 3,96 3,87 150,3 148,9 149,2 155,4 151,7 GWP 2088 2088 2088 2088 2088 t 62,6 71,0 91,9 96,0 116,9 Kg 30 34 44 46 56 n°/n° 4/2 4/2 4/2 4/2 4/2 A 91,8 109,6 138,6 157 174,6 A 140 165 195 229 264 A 250 310 380 429 444 n° 2 3 3 4 4 kW 5,0 7,4 7,4 9,9 9,9 m³/h 50500 80100 75950 106800 101050 A				

ERAE Kc		40020	46020	51020	55020	59020
Datos de rendimiento						
Capacidad de enfriamiento	kW	399,5	465,4	501,4	551,8	588,1
Potencia absorbida	kW	144,2	171,3	187,5	198,4	215,6
EER	W/W	2,27	2,72	2,67	2,78	2,73
SEER (1)		3,87	4,16	4,12	4,15	4,12
ηs,c ⁽¹⁾		151,6	163,6	161,9	162,9	160,1
Datos de refrigerante R410A						
Potencial de calentamiento global	GWP	2088	2088	2088	2088	2088
Carga en equivalente de CO ₂	t	154,5	187,9	187,9	221,3	225,5
Carga de refrigerante	Kg	74	90	90	106	108
Compresores de desplazamiento						
Cantidad/Circuitos	n°/n°	4/2	6/2	6/2	6/2	6/2
Consumo de corriente nominal	Α	219,4	262	287,2	305	326,4
Consumo máximo de corriente	Α	334	394	429	464	496
Intensidad de arranque	Α	579	539	649	669	691
Ventiladores axiales						
Cantidad	n°	5	8	8	8	10
Potencia del motor	kW	12,4	15,5	15,5	15,5	19,4
Flujo de aire total	m³/h	126350	169100	169100	162350	211450
Consumo actual	Α	25,8	31,2	31,2	31,2	39,0
Evaporador de placas soldadas al quilil						
Cantidad	n°	1	1	1	1	1
Flujo de agua	m³/h	68,9	80,2	86,4	95,1	101,4
Pérdidas de carga	kPa	53,5	47,5	55,0	62,0	73,0
Nivel de potencia acústica (2)	dB(A)	98,5	98,5	98,5	98,5	100,0
Fuente de alimentación	V/Hz/Ph	400/50/3	400/50/3	400/50/3	400/50/3	400/50/3

Las prestaciones están referidas a las siguientes condiciones: Aire exterior $35^{\circ}\text{C}\,$ – agua $23/18^{\circ}\text{C}\,$

⁽²⁾ Nivel de potencia sonora calculado según ISO 3744.

⁽¹⁾ Según normativa (EU) y las reglas armonizadas.

Datos técnicos - serie ERAE WA Kc

ERAE WA Kc		16020	19020	24020	28020	32020	35120			
Datos de rendimiento										
Capacidad de enfriamiento	kW	195,3	245,8	306,1	351,7	400,6	458,9			
Potencia absorbida	kW	62,63	84,07	103,80	118,80	133,30	149,50			
EER	W/W	3,12	2,92	2,95	2,96	3,01	3,07			
SEER (1)		3,96	3,90	3,89	4,04	3,84	4,08			
ηs,c ⁽¹⁾		155,3	152,9	152,6	158,5	150,7	160,3			
Datos de refrigerante R410A										
Potencial de calentamiento global	GWP	2088	2088	2088	2088	2088	2088			
Carga en equivalente de CO ₂	t	54,3	62,6	75,2	96,0	96,0	125,3			
Carga de refrigerante	Kg	26	30	36	46	46	60			
Compresores de desplazamiento										
Cantidad/Circuitos	n°/n°	4/2	4/2	4/2	4/2	4/2	4/2			
Consumo de corriente nominal	Α	102,9	127,6	155,9	180,1	200,2	226			
Consumo máximo de corriente	Α	140	165	195	230	264	299			
Intensidad de arranque	Α	260	325	395	445	464	574			
Ventiladores axiales										
Cantidad	n°	2	2	3	3	4	4			
Potencia del motor	kW	5,0	5,0	7,4	7,4	9,9	9,9			
Flujo de aire total	m³/h	50500	50500	80100	80100	106800	106800			
Consumo actual	Α	10,3	10,3	15,5	15,5	20,6	20,6			
Evaporador de placas soldadas al quilil	brio									
Cantidad	n°	1	1	1	1	1	1			
Flujo de agua	m³/h	33,8	42,7	53,1	61,1	69,3	79,7			
Pérdidas de carga	kPa	47,0	72,0	92,0	82,0	106,0	90,0			
Nivel de potencia acústica (2)	dB(A)	88,0	91,5	94,5	95,0	95,0	96,0			
Fuente de alimentación	V/Hz/Ph	400/50/3	400/50/3	400/50/3	400/50/3	400/50/3	400/50/3			

ERAE WA Kc		40020	46020	51020	55020	59020					
Datos de rendimiento											
Capacidad de enfriamiento	kW	515,7	603,0	646,4	696,2	771,5					
Potencia absorbida	kW	169,00	199,80	219,80	235,20	245,3					
EER	W/W	3,05	3,02	2,94	2,96	3,14					
SEER (1)		3,87	4,22	4,15	4,30	4,23					
ηs,c ⁽¹⁾		151,7	165,6	162,9	168,9	166,4					
Datos de refrigerante R410A											
Potencial de calentamiento global	GWP	2088	2088	2088	2088	2088					
Carga en equivalente de CO ₂	t	125,3	167,0	183,7	192,1	221,3					
Carga de refrigerante	Kg	60	80	88	92	106					
Compresores de desplazamiento	Compresores de desplazamiento										
Cantidad/Circuitos	n°/n°	4/2	6/2	6/2	6/2	6/2					
Consumo de corriente nominal	Α	253,6	305,1	335,7	355,8	371,1					
Consumo máximo de corriente	Α	334	394	429	464	499					
Intensidad de arranque	А	604	569	684	709	729					
Ventiladores axiales											
Cantidad	n°	5	5	5	8	8					
Potencia del motor	kW	12,4	12,4	12,4	15,5	15,5					
Flujo de aire total	m³/h	133500	133500	133500	169100	169100					
Consumo actual	Α	25,8	25,8	25,8	31,2	31,2					
Evaporador de placas soldadas al quilib	rio										
Cantidad	n°	1	1	1	1	1					
Flujo de agua	m³/h	89,5	104,8	112,4	120,8	133,9					
Pérdidas de carga	kPa	83,0	76,0	86,0	91,5	111,0					
Nivel de potencia acústica (2)	dB(A)	98,5	98,5	98,5	98,5	100,0					
Fuente de alimentación	V/Hz/Ph	400/50/3	400/50/3	400/50/3	400/50/3	400/50/3					

Las prestaciones están referidas a las siguientes condiciones: Aire exterior 35°C $\,$ – agua 23/18°C $\,$

⁽¹⁾ Según normativa (EU) y las reglas armonizadas.

⁽²⁾ Nivel de potencia sonora calculado según ISO 3744.

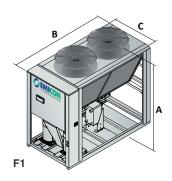
Datos técnicos - serie ERAE AM Kc

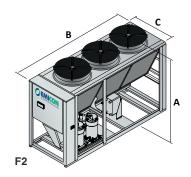
EDAE 434 //		45000	40000	24020	2222	22222	25422			
ERAE AM Kc		16020	19020	24020	28020	32020	35120			
Datos de rendimiento										
Capacidad de enfriamiento	kW	147,7	184,9	234,0	266,4	303,5	348,0			
Potencia absorbida	kW	56,5	73,7	93,2	105,5	118,3	132,1			
EER	W/W	2,61	2,51	2,51	2,53	2,57	2,63			
SEER (1)		3,34	3,40	3,55	3,51	3,38	3,58			
ηs,c ⁽¹⁾		130,6	133,0	139,0	137,3	132,2	140,2			
Datos de refrigerante R410A										
Potencial de calentamiento global	GWP	2088	2088	2088	2088	2088	2088			
Carga en equivalente de CO,	t	54,3	62,6	75,2	96,0	96,0	125,3			
Carga de refrigerante	Kg	26	30	36	46	46	60			
Compresores de desplazamiento										
Cantidad/Circuitos	n°/n°	4/2	4/2	4/2	4/2	4/2	4/2			
Consumo de corriente nominal	Α	95,1	116	143,4	163,3	180,5	203			
Consumo máximo de corriente	Α	140	165	195	230	264	299			
Intensidad de arranque	Α	255	315	385	435	449	559			
Ventiladores axiales										
Cantidad	n°	2	2	3	3	4	4			
Potencia del motor	kW	5,0	5,0	7,4	7,4	9,9	9,9			
Flujo de aire total	m³/h	50500	50500	80100	80100	106800	106800			
Consumo actual	Α	10,3	10,3	15,5	15,5	20,6	20,6			
Evaporador de placas soldadas al quili	brio									
Cantidad	n°	1	1	1	1	1	1			
Flujo de agua	m³/h	25,5	31,9	40,3	45,9	52,3	60,0			
Pérdidas de carga	kPa	29,0	44,0	53,5	52,0	67,5	56,5			
Nivel de potencia acústica (2)	dB(A)	88,0	91,5	94,5	95,0	95,0	96,0			
Fuente de alimentación	V/Hz/Ph	400/50/3	400/50/3	400/50/3	400/50/3	400/50/3	400/50/3			

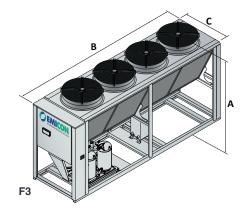
ERAE AM Kc		40020	46020	51020	55020	59020				
Datos de rendimiento										
Capacidad de enfriamiento	kW	390,0	455,3	488,7	529,7	582,9				
Potencia absorbida	kW	149,3	176,1	192,9	207,9	216,1				
EER	W/W	2,61	2,59	2,53	2,55	2,70				
SEER (1)		3,43	3,60	3,58	3,73	3,80				
ηs,c ⁽¹⁾		134,0	141,1	140,4	146,1	149,1				
Datos de refrigerante R410A										
Potencial de calentamiento global	GWP	2088	2088	2088	2088	2088				
Carga en equivalente de CO,	t	125,3	167,0	183,7	192,1	221,3				
Carga de refrigerante	Kg	60	80	88	92	106				
Compresores de desplazamiento										
Cantidad/Circuitos	n°/n°	4/2	6/2	6/2	6/2	6/2				
Consumo de corriente nominal	Α	227	273,3	299,4	318,9	332,5				
Consumo máximo de corriente	Α	334	394	429	464	499				
Intensidad de arranque	Α	584	544	654	679	694				
Ventiladores axiales										
Cantidad	n°	5	5	5	8	8				
Potencia del motor	kW	12,4	12,4	12,4	15,5	15,5				
Flujo de aire total	m³/h	133500	133500	133500	169100	169100				
Consumo actual	Α	25,8	25,8	25,8	31,2	31,2				
Evaporador de placas soldadas al quili	ibrio									
Cantidad	n°	1	1	1	1	1				
Flujo de agua	m³/h	67,2	78,5	84,3	91,3	100,5				
Pérdidas de carga	kPa	51,0	45,5	52,5	57,5	72,5				
Nivel de potencia acústica (2)	dB(A)	98,5	98,5	98,5	98,5	100,0				
Fuente de alimentación	V/Hz/Ph	400/50/3	400/50/3	400/50/3	400/50/3	400/50/3				

Las prestaciones están referidas a las siguientes condiciones: Aire exterior $35^{\circ}\text{C}\,$ – agua $23/18^{\circ}\text{C}\,$

⁽²⁾ Nivel de potencia sonora calculado según ISO 3744.


⁽¹⁾ Según normativa (EU) y las reglas armonizadas.

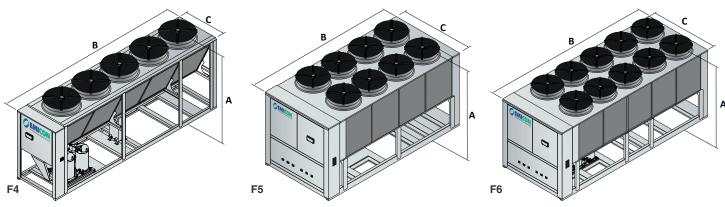

Accessorios - serie ERAE Kc


ERAE Kc		16020	19020	24020	28020	32020	35120
Amperómetro	A	0	0	0	0	0	0
Funcionamiento a bajas temperaturas aire exterior (-20 °C)	BF	•	•	•	•	•	•
Carcasa fonoabsorbente de los compresores con material estándar	CF	0	0	0	0	0	0
Cubierta integral de los compresores y el compartimento técnico	CFT	0	0	0	0	0	0
Cuenta-arrangues del compresor	CS	0	0	0	0	0	0
Ventiladores axiales	EC	0	0	0	0	0	0
Rejilla de seguridad en la batería de condensación	GP	0	0	0	0	0	0
Rejilla anti-intrusión	GP2	0	0	0	0	0	0
Rejilla anti-intrusión compartimiento compresores	GP3	0	0	0	0	0	0
Aislamiento Victaulic para el lado bomba	11	0	0	0	0	0	0
Aislamiento Victaulic para el lado tanque	12	0	0	0	0	0	0
Interfaz serial RS 485	IH	0	0	0	0	0	0
Interfaz serial para el protocolo Lon	IH (LON)	0	0	0	0	0	0
Embalaje caja marina	İM	0	0	0	0	0	0
Interfaz serial para el protocolo SNMP o TCP/IP	IWG	0	0	0	0	0	0
Dispositivo de monitorización de las fases	MF	0	0	0	0	0	0
Módulo tanque	MV	0	О	0	0	О	0
Grupo bomba	P1	0	0	0	0	0	0
Grupo bomba con altura de elevación	P1H	0	О	0	0	О	0
Grupo bomba en paralelo (sólo una en marcha)	P2	0	0	0	0	0	0
Grupo bomba en paralelo con altura de elevación (sólo una en marcha)	P2H	0	О	0	0	О	0
Soportes anti-vibración de goma	PA	0	0	0	0	0	0
Soportes anti-vibración a resorte	PM	0	О	0	0	О	0
Terminal remoto	PQ	0	0	0	0	0	0
Grupo bomba gemelar (sólo una en marcha)	PT	0	О	0	0	О	О
Resistencia anti-hielo en el evaporador	RA	0	0	0	0	0	0
Grifo de caudal de los compresores	RD	0	О	0	0	О	О
Grifo de aspiración de los compresores	RH	0	0	0	0	0	0
Termostática Electrónica	TE	0	О	0	0	О	О
Voltímetro	V	0	0	0	0	0	0
Versión Brine	VB	0	0	0	0	0	О
Válvula Solenoide	VS	0	0	0	0	0	0
Relé térmico de los compresores	RL	0	0	0	0	0	О
Recuperación parcial	RP	0	0	0	0	0	0
Recuperación total	RT	0	0	0	0	0	0
Batteria rame/rame	RR	0	0	0	0	0	0
Baterías con aletas pre-pintura	RM	0	0	0	0	0	0
Pintura de la estructura en color RAL personalizado	RV	0	0	0	0	0	0

• Estándar o Opcional - No disponible

Dimensional - serie ERAE Kc

Mod.		A (mm)	B (mm)	C (mm)	Kg
16020	F1	2420	2660	1370	1166
19020	F2	2420	3700	1370	1620
24020	F2	2420	3700	1370	1776
28020	F3	2420	4740	1370	1954
32020	F3	2420	4740	1370	2066
35120	F4	2420	5780	1370	2248



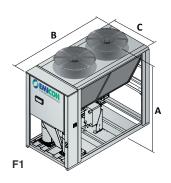
Accessorios - serie ERAE Kc

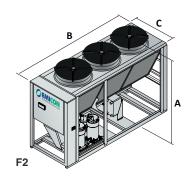
ERAE Kc		40020	46020	51020	55020	59020
Amperómetro	Α	0	0	0	0	0
Funcionamiento a bajas temperaturas aire exterior (-20 °C)	BF	•	•	•	•	•
Carcasa fonoabsorbente de los compresores con material estándar	CF	0	О	0	0	0
Cubierta integral de los compresores y el compartimento técnico	CFT	0	-	-	-	-
Cuenta-arranques del compresor	CS	0	0	0	0	0
Ventiladores axiales	EC	0	0	0	0	0
Rejilla de seguridad en la batería de condensación	GP	0	О	0	0	0
Rejilla anti-intrusión	GP2	0	0	0	0	0
Rejilla anti-intrusión compartimiento compresores	GP3	0	О	0	0	0
Aislamiento Victaulic para el lado bomba	I1	0	0	0	0	0
Aislamiento Victaulic para el lado tanque	12	0	0	0	0	0
Interfaz serial RS 485	IH	0	0	0	0	0
Interfaz serial para el protocolo Lon	IH (LON)	0	О	0	0	0
Embalaje caja marina	IM	0	0	0	0	0
Interfaz serial para el protocolo SNMP o TCP/IP	IWG	0	О	0	0	0
Dispositivo de monitorización de las fases	MF	0	0	0	0	0
Módulo tanque	MV	0	0	0	О	0
Grupo bomba	P1	0	0	0	0	0
Grupo bomba con altura de elevación	P1H	0	О	0	0	0
Grupo bomba en paralelo (sólo una en marcha)	P2	0	0	0	0	0
Grupo bomba en paralelo con altura de elevación (sólo una en marcha)	P2H	0	0	0	0	0
Soportes anti-vibración de goma	PA	0	0	0	0	0
Soportes anti-vibración a resorte	PM	0	О	0	0	0
Terminal remoto	PQ	0	0	0	0	0
Grupo bomba gemelar (sólo una en marcha)	PT	0	0	0	0	0
Resistencia anti-hielo en el evaporador	RA	0	0	0	0	0
Grifo de caudal de los compresores	RD	0	0	0	0	0
Grifo de aspiración de los compresores	RH	0	0	0	0	0
Termostática Electrónica	TE	•	•	•	•	•
Voltímetro	V	0	0	0	0	0
Versión Brine	VB	0	О	О	О	0
Válvula Solenoide	VS	0	0	0	0	0
Relé térmico de los compresores	RL	0	О	0	О	0
Recuperación parcial	RP	0	0	0	0	0
Recuperación total	RT	0	О	О	О	0
Batteria rame/rame	RR	0	0	0	0	0
Baterías con aletas pre-pintura	RM	0	О	0	О	0
Pintura de la estructura en color RAL personalizado	RV	0	0	0	0	0

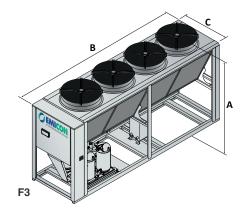
• Estándar o Opcional - No disponible

Dimensional - serie ERAE Kc

Mod.		A (mm)	B (mm)	C (mm)	Kg
40020	F4	2420	5780	1370	2410
46020	F5	2560	4750	2300	3278
51020	F5	2560	4750	2300	3368
55020	F5	2560	4750	2300	3592
59020	F6	2560	5700	2300	4038



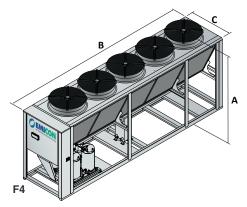

Accessorios - serie ERAE WA Kc

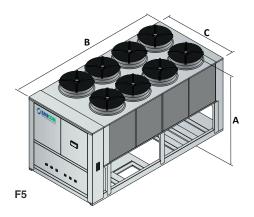

ERAE WA Kc		16020	19020	24020	28020	32020	35120
Amperómetro	Α	0	0	0	0	0	0
Funcionamiento a bajas temperaturas aire exterior (-20 °C)	BF	0	0	0	0	0	0
Carcasa fonoabsorbente de los compresores con material estándar	CF	0	0	0	0	0	0
Cubierta integral de los compresores y el compartimento técnico	CFT	0	0	0	0	0	0
Cuenta-arrangues del compresor	CS	0	0	0	0	0	0
Ventiladores axiales	EC	0	0	0	0	0	0
Rejilla de seguridad en la batería de condensación	GP	0	0	0	0	0	0
Rejilla anti-intrusión	GP2	0	0	0	0	0	0
Rejilla anti-intrusión compartimiento compresores	GP3	0	0	0	0	0	0
Aislamiento Victaulic para el lado bomba	I1	0	0	0	0	0	0
Aislamiento Victaulic para el lado tanque	12	0	О	0	0	О	0
Interfaz serial RS 485	IH	0	0	0	0	0	0
Interfaz serial para el protocolo Lon	IH (LON)	0	О	0	0	О	0
Embalaje caja marina	IM	0	0	0	0	0	0
Interfaz serial para el protocolo SNMP o TCP/IP	IWG	0	О	0	0	О	0
Dispositivo de monitorización de las fases	MF	0	0	0	0	0	0
Módulo tanque	MV	0	0	0	0	О	0
Grupo bomba	P1	0	0	0	0	0	0
Grupo bomba con altura de elevación	P1H	0	О	0	0	О	0
Grupo bomba en paralelo (sólo una en marcha)	P2	0	0	0	0	0	0
Grupo bomba en paralelo con altura de elevación (sólo una en marcha)	P2H	0	О	0	0	О	0
Soportes anti-vibración de goma	PA	0	0	0	0	0	0
Soportes anti-vibración a resorte	PM	0	О	0	0	0	0
Terminal remoto	PQ	0	0	0	0	0	0
Grupo bomba gemelar (sólo una en marcha)	PT	0	О	0	0	О	0
Resistencia anti-hielo en el evaporador	RA	0	0	0	0	0	0
Grifo de caudal de los compresores	RD	0	О	0	0	0	0
Grifo de aspiración de los compresores	RH	0	0	0	0	0	0
Termostática Electrónica	TE	0	О	0	0	О	0
Voltímetro	V	0	0	0	0	0	0
Versión Brine	VB	0	0	0	0	0	0
Válvula Solenoide	VS	0	0	0	0	0	0
Relé térmico de los compresores	RL	0	0	0	0	0	0
Recuperación parcial	RP	0	0	0	0	0	0
Recuperación total	RT	0	0	0	0	0	0
Batteria rame/rame	RR	0	0	0	0	0	0
Baterías con aletas pre-pintura	RM	0	0	0	0	0	0
Pintura de la estructura en color RAL personalizado	RV	0	0	0	0	0	0

• Estándar o Opcional - No disponible

Dimensional - serie ERAE WA Kc

Mod.		A (mm)	B (mm)	C (mm)	Kg
16020	F1	2420	2660	1370	1110
19020	F1	2420	2660	1370	1516
24020	F2	2420	3700	1370	1690
28020	F2	2420	3700	1370	1870
32020	F3	2420	4740	1370	1954
35120	F3	2420	4740	1370	2200

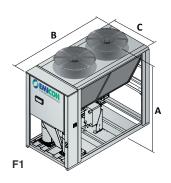


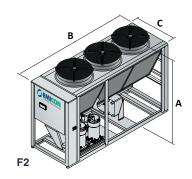

Accessorios - serie ERAE WA Kc

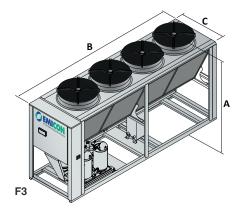
ERAE WA Kc		40020	46020	51020	55020	59020
Amperómetro	Α	0	0	0	0	0
Funcionamiento a bajas temperaturas aire exterior (-20 °C)	BF	0	0	0	0	0
Carcasa fonoabsorbente de los compresores con material estándar	CF	0	0	0	О	О
Cubierta integral de los compresores y el compartimento técnico	CFT	0	0	0	-	-
Cuenta-arranques del compresor	CS	0	0	0	0	О
Ventiladores axiales	EC	0	0	0	0	0
Rejilla de seguridad en la batería de condensación	GP	0	0	0	0	О
Rejilla anti-intrusión	GP2	0	0	0	0	0
Rejilla anti-intrusión compartimiento compresores	GP3	0	0	0	0	О
Aislamiento Victaulic para el lado bomba	l1	0	0	0	0	0
Aislamiento Victaulic para el lado tanque	12	0	0	0	0	О
Interfaz serial RS 485	IH	0	0	0	0	0
Interfaz serial para el protocolo Lon	IH (LON)	0	0	0	О	О
Embalaje caja marina	IM	0	0	0	0	0
Interfaz serial para el protocolo SNMP o TCP/IP	IWG	0	0	0	0	О
Dispositivo de monitorización de las fases	MF	0	0	0	0	0
Módulo tanque	MV	0	0	0	0	О
Grupo bomba	P1	0	0	0	0	0
Grupo bomba con altura de elevación	P1H	0	0	0	0	О
Grupo bomba en paralelo (sólo una en marcha)	P2	0	0	0	0	0
Grupo bomba en paralelo con altura de elevación (sólo una en marcha)	P2H	0	0	0	0	О
Soportes anti-vibración de goma	PA	0	0	0	0	0
Soportes anti-vibración a resorte	PM	0	0	0	0	О
Terminal remoto	PQ	0	0	0	0	0
Grupo bomba gemelar (sólo una en marcha)	PT	0	0	0	0	О
Resistencia anti-hielo en el evaporador	RA	0	0	0	0	0
Grifo de caudal de los compresores	RD	0	0	0	0	О
Grifo de aspiración de los compresores	RH	0	0	0	0	0
Termostática Electrónica	TE	0	0	О	0	О
Voltímetro	V	0	0	0	0	0
Versión Brine	VB	0	О	0	О	О
Válvula Solenoide	VS	0	0	0	0	0
Relé térmico de los compresores	RL	0	0	0	О	0
Recuperación parcial	RP	0	0	0	0	0
Recuperación total	RT	0	0	О	О	0
Batteria rame/rame	RR	0	0	0	0	0
Baterías con aletas pre-pintura	RM	0	0	0	О	0
Pintura de la estructura en color RAL personalizado	RV	0	0	0	0	0

• Estándar o Opcional - No disponible

Dimensional - serie ERAE WA Kc


Mod.		A (mm)	B (mm)	C (mm)	Kg
40020	F4	2420	5780	1370	2270
46020	F4	2420	5780	1370	2752
51020	F4	2420	5780	1370	2982
55020	F5	2560	4750	2300	3380
59020	F5	2560	4750	2300	3592

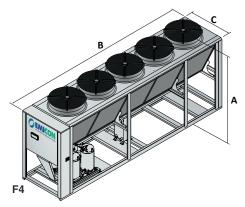

Accessorios - serie ERAE AM Kc

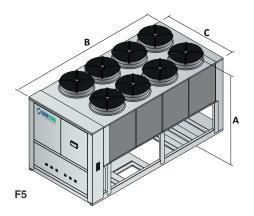

ERAE AM Kc		16020	19020	24020	28020	32020	35120
Amperómetro	A	0	0	0	0	0	0
Funcionamiento a bajas temperaturas aire exterior (-20 °C)		0	0	0	0	0	0
Carcasa fonoabsorbente de los compresores con material estándar	CF	0	0	0	0	0	0
Cubierta integral de los compresores y el compartimento técnico	CFT	0	0	0	0	0	0
Cuenta-arrangues del compresor	CS	0	0	0	0	0	0
Ventiladores axiales	EC	0	0	0	0	0	0
Rejilla de seguridad en la batería de condensación	GP	0	0	0	0	0	0
Rejilla anti-intrusión	GP2	0	0	0	0	0	0
Rejilla anti-intrusión compartimiento compresores	GP3	0	0	0	0	0	0
Aislamiento Victaulic para el lado bomba	l1	0	0	0	0	0	0
Aislamiento Victaulic para el lado tanque	12	0	О	0	0	О	0
Interfaz serial RS 485	IH	0	0	0	0	0	0
Interfaz serial para el protocolo Lon	IH (LON)	0	О	0	0	О	0
Embalaje caja marina	IM	0	0	0	0	0	0
Interfaz serial para el protocolo SNMP o TCP/IP	IWG	0	О	0	0	О	0
Dispositivo de monitorización de las fases		0	0	0	0	0	0
Módulo tanque		0	О	0	0	О	0
Grupo bomba		0	0	0	0	0	0
Grupo bomba con altura de elevación	P1H	0	О	0	0	О	0
Grupo bomba en paralelo (sólo una en marcha)		0	0	0	0	0	0
Grupo bomba en paralelo con altura de elevación (sólo una en marcha)		0	О	0	0	О	0
Soportes anti-vibración de goma		0	0	0	0	0	0
Soportes anti-vibración a resorte		0	О	0	0	0	0
Terminal remoto	PQ	0	0	0	0	0	0
Grupo bomba gemelar (sólo una en marcha)	PT	0	О	0	0	О	0
Resistencia anti-hielo en el evaporador	RA	0	0	0	0	0	0
Grifo de caudal de los compresores	RD	0	О	0	0	0	0
Grifo de aspiración de los compresores	RH	0	0	0	0	0	0
Termostática Electrónica	TE	0	0	0	О	0	0
Voltímetro	V	0	0	0	0	0	0
Versión Brine	VB	0	О	0	0	О	0
Válvula Solenoide	VS	0	0	0	0	0	0
Relé térmico de los compresores	RL	0	0	0	0	0	0
Recuperación parcial	RP	0	0	0	0	0	0
Recuperación total		0	0	0	0	0	0
Batteria rame/rame	RR	0	0	0	0	0	0
Baterías con aletas pre-pintura	RM	0	0	0	0	0	0
Pintura de la estructura en color RAL personalizado	RV	0	0	0	0	0	0

• Estándar o Opcional - No disponible

Dimensional - serie ERAE AM Kc

Mod.		A (mm)	B (mm)	C (mm)	Kg
16020	F1	2420	2660	1370	1110
19020	F1	2420	2660	1370	1516
24020	F2	2420	3700	1370	1690
28020	F2	2420	3700	1370	1870
32020	F3	2420	4740	1370	1954
35120	F3	2420	4740	1370	2200




Accessorios - serie ERAE AM Kc

ERAE AM KC		40020	46020	51020	55020	59020
Amperómetro	Α	0	0	0	0	0
Funcionamiento a bajas temperaturas aire exterior (-20 °C)		0	0	0	0	0
Carcasa fonoabsorbente de los compresores con material estándar	CF	0	0	0	0	0
Cubierta integral de los compresores y el compartimento técnico	CFT	0	0	0	-	-
Cuenta-arranques del compresor	CS	0	0	0	0	0
Ventiladores axiales	EC	0	0	0	0	0
Rejilla de seguridad en la batería de condensación	GP	0	0	0	0	0
Rejilla anti-intrusión	GP2	0	0	0	0	0
Rejilla anti-intrusión compartimiento compresores	GP3	0	0	0	0	0
Aislamiento Victaulic para el lado bomba	l1	0	0	0	0	0
Aislamiento Victaulic para el lado tanque	12	0	О	0	0	0
Interfaz serial RS 485	IH	0	0	0	0	0
Interfaz serial para el protocolo Lon	IH (LON)	0	О	0	О	0
Embalaje caja marina	IM	0	0	0	0	0
Interfaz serial para el protocolo SNMP o TCP/IP	IWG	0	О	0	0	0
Dispositivo de monitorización de las fases	MF	0	0	0	0	0
Módulo tanque	MV	0	О	0	0	0
Grupo bomba	P1	0	0	0	0	0
Grupo bomba con altura de elevación	P1H	0	0	0	0	0
Grupo bomba en paralelo (sólo una en marcha)	P2	0	0	0	0	0
Grupo bomba en paralelo con altura de elevación (sólo una en marcha)	P2H	0	О	0	О	0
Soportes anti-vibración de goma	PA	0	0	0	0	0
Soportes anti-vibración a resorte	PM	0	0	0	0	0
Terminal remoto	PQ	0	0	0	0	0
Grupo bomba gemelar (sólo una en marcha)	PT	0	0	0	0	0
Resistencia anti-hielo en el evaporador	RA	0	0	0	0	0
Grifo de caudal de los compresores	RD	0	0	0	0	0
Grifo de aspiración de los compresores	RH	0	0	0	0	0
Termostática Electrónica	TE	0	0	0	0	0
Voltímetro	V	0	0	0	0	0
Versión Brine	VB	0	О	О	0	0
Válvula Solenoide	VS	0	0	0	0	0
Relé térmico de los compresores	RL	0	0	0	0	0
Recuperación parcial	RP	0	0	0	0	0
Recuperación total	RT	О	0	0	0	0
Batteria rame/rame	RR	0	0	0	0	0
Baterías con aletas pre-pintura	RM	0	0	О	0	0
Pintura de la estructura en color RAL personalizado	RV	0	0	0	0	0

• Estándar o Opcional - No disponible

Dimensional - serie ERAE AM Kc

Mod.		A (mm)	B (mm)	C (mm)	Kg
40020	F4	2420	5780	1370	2270
46020	F4	2420	5780	1370	2752
51020	F4	2420	5780	1370	2982
55020	F5	2560	4750	2300	3380
59020	F5	2560	4750	2300	3592